Sparsity Inducing Prior Distributions for Correlation Matrices through the Partial Autocorrelations

نویسندگان

  • J. T. Gaskins
  • M. J. Daniels
  • B. H. Marcus
چکیده

Modeling a correlation matrix R can be a difficult statistical task due to both the positive definite and the unit diagonal constraints. Because the number of parameters increases quadratically in the dimension, it is often useful to consider a sparse parameterization. We introduce a pair of prior distributions on the set of correlation matrices for longitudinal data through the partial autocorrelations (PACs), each of which vary independently over [-1,1]. The first prior shrinks each of the PACs toward zero with increasingly aggressive shrinkage in lag. The second prior (a selection prior) is a mixture of a zero point mass and a continuous component for each PAC, allowing for a sparse representation. The structure implied under our priors is readily interpretable because each zero PAC implies a conditional independence relationship in the distribution of the data. Selection priors on the PACs provide a computationally attractive alternative to selection on the elements of R or R−1 for ordered data. These priors allow for data-dependent shrinkage/selection under an intuitive parameterization in an unconstrained setting. The proposed priors are compared to standard methods through a simulation study and a multivariate probit data example. Supplemental materials for this article (appendix, data, and R code) are available online.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modeling covariance matrices via partial autocorrelations

We study the role of partial autocorrelations in the reparameterization and parsimonious modeling of a covariance matrix. The work is motivated by and tries to mimic the phenomenal success of the partial autocorrelations function (PACF) in model formulation, removing the positive-definiteness constraint on the autocorrelation function of a stationary time series and in reparameterizing the stat...

متن کامل

Bayesian Structured Sparsity from Gaussian Fields

Substantial research on structured sparsity has contributed to analysis of many different applications. However, there have been few Bayesian procedures among this work. Here, we develop a Bayesian model for structured sparsity that uses a Gaussian process (GP) to share parameters of the sparsity-inducing prior in proportion to feature similarity as defined by an arbitrary positive definite ker...

متن کامل

Partially sparse imaging of stationary indoor scenes

In this paper, we exploit the notion of partial sparsity for scene reconstruction associated with through-the-wall radar imaging of stationary targets under reduced data volume. Partial sparsity implies that the scene being imaged consists of a sparse part and a dense part, with the support of the latter assumed to be known. For the problem at hand, sparsity is represented by a few stationary i...

متن کامل

Information Covariance Matrices for Multivariate Burr III and Logistic Distributions

Main result of this paper is to derive the exact analytical expressions of information and covariance matrices for multivariate Burr III and logistic distributions. These distributions arise as tractable parametric models in price and income distributions, reliability, economics, Human population, some biological organisms to model agricultural population data and survival data. We showed that ...

متن کامل

Adaptive Bayesian Shrinkage Estimation Using Log-Scale Shrinkage Priors

Global-local shrinkage hierarchies are an important, recent innovation in Bayesian estimation of regression models. In this paper we propose to use log-scale distributions as a basis for generating familes of flexible prior distributions for the local shrinkage hyperparameters within such hierarchies. An important property of the log-scale priors is that by varying the scale parameter one may v...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013